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Abstract. Usually, interval global optimization algorithms use local search methods to obtain a good
upper (lower) bound of the solution. These local methods are based on point evaluations. This paper
investigates a new local search method based on interval analysis information and on a new selection
criterion to direct the search. When this new method is used alone, the guarantee to obtain a global
solution is lost. To maintain this guarantee, the new local search method can be incorporated to a
standard interval GO algorithm, not only to find a good upper bound of the solution, but also to
simultaneously carry out part of the work of the interval B&B algorithm. Moreover, the new method
permits improvement of the guaranteed upper bound of the solution with the memory requirements
established by the user. Thus, the user can avoid the possible memory problems arising in interval
GO algorithms, mainly when derivative information is not used. The chance of reaching the global
solution with this algorithm may depend on the established memory limitations. The algorithm has
been evaluated numerically using a wide set of test functions which includes easy and hard problems.
The numerical results show that it is possible to obtain accurate solutions for all the easy functions
and also for the investigated hard problems.
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1. Introduction

Interval global optimization is a research field which investigates the problem of
finding the set of optimizer points in a given domain using interval methods. The
state of the art in this subject along with the increasing computing power allow the
solution of many global optimization problems. Nevertheless, even using all the
available accelerating devices, there exists a set of hard problems for which not
even the most powerful computers are able to find accurate solutions. In fact, the
main reasons why an Interval Global Optimization (IGO) algorithm does not reach
the solution of a specific instance are: (a) large overestimations of the inclusion
function and its derivatives, (b) the instance to be solved contains many local min-
imizer points, (c) the instance is of high dimension, (d) the corresponding objective
function is not differentiable. Often, the amount of memory required in order to
solve this kind of problems is higher than the computer’s memory resources.
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We are interested in a fast and simple interval B&B algorithm. In this sense, the
Moore-Skelboe algorithm [18] with the midpoint test [12] is one of the simplest
B&B algorithms suitable for minimizing differentiable and non differentiable func-
tions. However the Moore-Skelboe algorithm performs badly when difficult prob-
lems are treated and/or very accurate solutions are required. This is due to the fact
that the storedn-dimensional interval vectors (boxes) in the work list can run out of
the available random access memory, slowing down the execution of the algorithm
or hindering the attainment of very accurate solutions. The investigated algorithm
is a variant of the Moore-Skelboe algorithm that explicitly uses a limited budget for
the computer memory resources. This budget is a parameter of the algorithm which
controls the computational effort applied to the problem at hand and the maximum
number of boxes in the final list.

In the next sections, after defining the general Interval Branch and Bound frame-
work, a discussion about the subdivision, selection and elimination criteria is made.
Section 4 is devoted to briefly describing our algorithm which intends to find a fast
solution for the global optimization problem. In Section 5 the algorithm is evalu-
ated by a set of experimental results obtained from the execution of the algorithm
using a wide set of test functions.

2. Definitions and General Framework

This paper investigates a variant of an Interval Branch-and-Bound (B&B) algorithm
[18] for solving the bound constrained global optimization problem [9, 10, 22]:

min
x∈S f (x), (1)

where then-dimensional intervalS ⊆ Rn is the search region, andf : Rn → R is
continuous.

The global minimum value off is denoted byf ∗ and the set of global minim-
izer points off onS byX∗. That is,

f ∗ = min
x∈S

f (x) and X∗ = {x ∈ S | f (x) = f ∗}.

Real numbers are denoted byx, y, . . . , and real bounded and closed interval
vectors byX = [X,X], Y = [Y , Y ], . . . , whereXi = min{x ∈ Xi} andXi =
max{x ∈ Xi}, for i = 1,2, . . . , n. The set of compact intervals is denoted by
I := {[a, b] | a 6 b, a, b ∈ R} and the set ofn-dimensional interval vectors (also
called boxes) byIn.

For real and interval vectors the notation

x = (x1, x2, . . . , xn)
T , xi ∈ R and X = (X1, X2, . . . , Xn)

T , Xi ∈ I
is used (i= 1,2, . . . , n). The width of the intervalX is defined byw(X) = X−X,
if X ∈ I, andw(X) = maxni=1w(Xi), if X ∈ In. The midpoint of the intervalX is
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defined bym(X) = (X+X)/2, ifX ∈ I, andm(X) = (m(X1),m(X2), . . . , m(Xn))
T ,

if X ∈ In.
The general framework for B&B algorithms can be characterized by the follow-

ing five rules: bounding, branching, termination, elimination and selection. They
can be briefly described as follows:

The bounding rule is given by interval arithmetic [16] which allow us to obtain
an inclusion function. A functionF : In → I is called aninclusion functionof
f in X ⊆ Rn, when x ∈ X implies f (x) ∈ F(X). In the present study the
inclusion function of the objective function is obtained by natural interval extension
[18] (real operations and standard functions are simply substituted by their interval
equivalents).

The branching rule used here consists of bisecting the two widest sides of the
current box in one step. More than two bisections in one step are not used to avoid
the explosion of the number of generated boxes. Other branching rules, some of
them using derivative information, can be found in [1, 7, 16, 19, 20].

The termination rule is generally based on the values ofw(X) and/orw(F(X))
[18]. In the present case,w(X) < ε was required as a stopping criterion for all the
remaining boxes.

The simplest and basic elimination rules are the midpoint and cut-off tests,
where boxes withf ∗ 6 f ∗ < F(X) are discarded (f ∗ is the current upper bound
of the minimum, updated by evaluatingF(m(X))). In addition to the midpoint
and cut-off tests, the monotonicity test, the non-convexity test [7] and the interval
Newton method [7, 18] can be applied. It is usually worth to use accelerating
devices based on derivative information because the number of evaluated boxes
can be decreased but the computational effort applied to a single box increases as
the dimension of the objective function increases. These tests might be less use-
ful when the objective function is multimodal and the related inclusion functions
overestimate the real range too much.

The usual selection rule consists of choosing, from the set of generated and
non rejected boxes (current set), that one with the smallest value ofF(X), using a
Best-First search strategy. With the Best-First search strategy, boxes in the current
set are located on different levels of the search tree and they differ in size and
shape. Forα-convergent inclusion functions [18], the overestimations of the range
obtained by the inclusion function depend (but not only) on the width of the given
interval. Therefore, a box can be selected because it is wider than the others, and not
because it contains a global minimizer point. As an example of this behaviour, the
first iterations of the Moore-Skelboe algorithm executed on the functionf (x) =∑3

i=0(−1)i sin(2πix) has been drawn in Figure 1.
In Figure 1 each box represents an interval[X,X] and its upper and lower

bounds[F(X), F (X)]. The whole search regionX1 is selected and divided using
bisection, generating subintervalsX2 andX3 which are evaluated by the inclusion
function. It can be observed thatF(X3) = F(X1) andF(X2) = F(X1). The
next selected interval (from the current set of boxes:{X3, X2}) to be divided is
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Figure 1. First iterations of the Moore-Skelboe algorithm on the problem of
f (x) =∑3

i=0(−1)i sin(2πix).

X3, because it has the smallest lower bound, generating subintervalsX4 andX5,
which are evaluated too. At this point the current set consists of{X2, X4, X5}.
Following the selection rule, the next processed interval will beX2, although it does
not contain the global minimum. It can be observed that even for intervals with the
same width (X4 andX5) the overestimation can be significantly different, but these
differences are smaller than those obtained between intervals with a different width.
The next section is devoted to the analysis of the advantages and disadvantages of
using an alternative selection criterion.

3. Discussion

An alternative selection criterion to the Best-First based onF(X) may consist of
choosing from the current set that box with the largest value of a parameterpf ∗(X)
which was defined in [2] as:

pf ∗(Xi) = f ∗ − F(Xi)

w(F(Xi))
∈ [0,1], ∀Xi ∈ S.

The numerator is equivalent to theF(X) selection criterion, because the value
of f ∗ is the same for every box in a fixed iteration. However, the numerator is
normalized byw(F(X)). Thus, the parameterpf ∗(X) is also based on the value
of F(X). In the framework of a B&B algorithm, using this new parameter, any
box X with pf ∗(X) < 0 will be eliminated by the cut-off test; so any box at
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the current set of boxes always verifies that 06 pf ∗(X) 6 1. In [2] pf ∗ has
been successfully used for solving the work load balancing problem in a parallel
computing environment, where it was used as an estimator of the computational
work load of any box.

Let us now show some experimental results which provide valuable information
about the use ofF(X) or pf ∗(X) as a parameter of the selection rule. As an
example, Figure 2 shows a comparison between both selection rules: Best-First
based onF(X) (upper graph) and Best-First based onpf ∗ (bottom graph), for a
standard test function (Levy 3). Both graphs represent the values ofpf ∗ for all
the selected boxes as the algorithm runs (rejected boxes are not represented in
these graphs because theirpf ∗ value is negative). During the algorithm execution,
boxes containing a global minimizer point have been shown as big circles. In these
graphs, a triangle has been drawn when the evaluation ofF(m(X)) produced an
improvement for the value off ∗. The best selection rule should choose from the
current set of boxes the one which contains a global minimizer point because it
increases the chances of obtaining good values of the upper bound off ∗.

Using a Best-FirstF selection rule, hardly any box is unnecessarily subdivided
[1], but the memory requirements exponentially depend on the width and the depth
of the search tree and the solution (minimum value off ∗) is usually found at the
final or intermediate stages of the algorithm execution (see upper graph of Figure
2).

On the other hand, the Best-Firstpf ∗ selection rule works like a Depth-First
search. The advantage of a Depth-First search is its linear memory complexity and
quick improvement off ∗. The graph at the bottom of Figure 2 shows that all of
thef ∗ improvements are done at the beginning of the algorithm execution because
it converges very quickly to one global minimizer point (the Levy 3 problem has
nine global minimizer points). The main drawback of a Depth-Search method is
that it produces a sequence of local searches and after reaching a local or global
minimizer point, it usually evaluates many boxes located in the region of attraction
to that minimizer point, so it can take a long time to leave the region of attraction
to a global or a local solution before it looks for another solution. Examples of this
behaviour are shown in the bottom graph of Figure 2 and in Figure 3.

An alternative to these search strategies may consist in mixing local and global
searches. It means that after a depth search which cannot go on to the next level
of the search tree, a new branch is selected from the highest levels of the search
tree to start a new depth search, and so on. A depth search cannot continue down-
wards when the boxes generated by a subdivision are rejected or they belong to the
solution set. Several selection rules based on this kind of mixed searches (named
hybrid selection rules) have been analysed in [11, 21]. An example of the execution
of a B&B algorithm which applies a hybrid selection rule based on the value of
pf ∗ is shown in Figure 4, where the best value off ∗ is found in the early stages
of the algorithm execution [2]. Also, all the sequences of selected boxes which
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Figure 2. Values ofpf ∗ for the Levy 3 function withε = 10−3, usingF(X) (upper graph)
andpf ∗ (bottom graph) in a Best-First selection criterion.

converge to the global minimum are examined at the first iterations of the algorithm
execution. The graph in the bottom of Figure 4 is a zoom of the upper graph.

Let us now suppose that the global optimization problem to be solved is a
very hard problem and after running a B&B algorithm for several hours it was
impossible to obtain a solution. In this situation, it can be decided to stop the
algorithm execution after a specified number of iterations or when the computer
runs out of memory, obtaining in this way an approximate or the true solution of
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Figure 3. Values ofpf ∗ for the Goldstein-Price function forε = 10−3, using the Best-First
pf ∗ selection criterion.

the problem. For these cases, the obtained solution may depend on the selection
criterion used by the B&B algorithm. The previous experiments have shown that
using a hybrid selection criterion the chance of finding the global (or a better)
solution at the first stage of the algorithm execution is higher than using a Best-First
strategy based onF(X).

In the next section a fast interval B&B algorithm based on a new hybrid selec-
tion rule is described. Section 5 is devoted to evaluating our algorithmic proposal
and to comparing it with a traditional B&B algorithm using a Best First selection
rule based onF(X).

4. Algorithmic Description

Globally, the algorithm we are investigating in this work follows a traditional B&B
framework and consists of two stages. The goal of the first stage is to improve the
value off ∗ as much as possible by a fast local search which incorporates a special
hybrid selection criterion. The second stage intends to assure a guaranteed global
solution and works on the set of boxes which were generated (but not processed)
during the first stage. Our main interest is to find out if the algorithm is able to reach
the global solution during the first stage. For the second stage any of the traditional
B&B algorithms can be used, so it is not described here (another approach could
consist of repeating the first phase on the set of non processed boxes).

This first stage is done by the FIO (Fast Interval Optimization) algorithm, de-
scribed by Algorithm 1. For the description of FIO algorithm, the following nota-
tion has been used:
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Figure 4. Values ofpf ∗ for the Goldstein-Price problem withε = 10−3, using a hybrid
selection rule. Bottom graph is a zoom of the upper one.

S: Search region.
F : Natural interval extension of functionf .
ε: Stopping criterion parameter (w(X) < ε).
L0: Work list.
L1: Temporary list.
L2: Secondary list.
Q: Final list.
Nm: Maximum number of boxes to be processed at each level of the search tree.
+/−: Denote including/discarding boxes in a list.
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ALGORITHM 1. Fast interval optimization algorithm

1 funct FIO (S, F, ε, L2, Q,Nm)
2 f ∗ = F(S) Upper bound off ∗
3 L0 := {S} Work list
4 L1 := {} Temporary list
5 L2 := {} Secondary list
6 Q := {} Final list
7 WHILE ( L0 6= {} )
8 NSelect:=0 Number of selected boxes fromL0
9 WHILE ( L0 6= {} AND NSelect< Nm)
10 X:=Head(L0) pf ∗(X) = max{pf ∗(Xi), ∀Xi ∈ L0}
11 L0 := L0− {X}
12 NSelect:=NSelect+1
13 f ∗ := min{f ∗, F (m(X))} Updatingf ∗
14 IF (f ∗ = F(m(X))) f ∗ just improved
15 L0:=CutOffTest(L0, f

∗)
16 Comment:∀Xi ∈ L0, f ∗ < F(Xi)⇒ L0 := L0 − {Xi}
17 L1:=CutOffTest(L1, f

∗)
18 L2:=CutOffTest(L2, f

∗)
19 Q:=CutOffTest(Q,f ∗)
20 SubdivideX intoX1, ...,X4

21 FOR i:=1 TO 4
22 IF ( f ∗ < F(Xi) NEXT i Midpoint test
23 IF ( w(Xi) < ε ) Q := Q+ {Xi} SaveXi in Q
24 ELSEL1 := L1+ {Xi} SaveXi in L1
25 L2 := L2+ L0
26 L0 := L1 Reject boxes fromL0
27 L1 := {}
28 End pseudo-code

The main differences between the FIO algorithm and the Moore-Skelboe al-
gorithm are the following:

− The selection criterion is based on thepf ∗ value; theNm boxes with the
greatestpf ∗ values will be selected and processed at every level of the search
tree.

− The FIO algorithm uses four different lists: A work list (L0) which stores the
set of candidate boxes to be selected for subdivision (the maximum number of
selected boxes fromL0 is Nm, a user given parameter); a temporary list (L1)
where the boxes obtained by subdividing the selected boxes from the work list
L0 are saved (the maximum number of boxes inL1 andL0 isNm× 2d , where
2d is the number of subintervals obtained after bisecting thed widest dimen-
sions of a box. In our implementationsd = 2); a secondary list (L2) with the
set of boxes inL0 which were not selected for subdivision; i.e. boxes which
will be processed in the second stage of the B&B algorithm (the maximum
number of boxes atL2 is Nm × (2d − 1) × lmax, wherelmax is the maximum
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Figure 5. An example of the search tree produced by the FIO algorithm withNm = 3 and
with a bisection subdivision strategy.

level of the search tree to reach the stopping criterion); a final listQ containing
the set of boxes which reached the termination criterion (w(X) 6 ε).

The set of boxes inL0 are ordered by a non-decreasingpf ∗(X) value. Those
boxes with the samepf ∗ value are ordered by a non-decreasingF(X) value and
those with the sameF(X) value are ordered by the Oldest-First criterion. In the
implementation of Algorithm 1, instead of simple linked lists, balanced binary trees
are applied, because they improve the complexity of the ordered insertion. In these
trees, each node is a linked list containing boxes with the samepf ∗ value.

Algorithm 1 starts by initiating the work list to the search regionS. The final,
secondary and temporary lists are empty at the beginning of the algorithm. The
algorithm consists of two loops: the outer loop runs for every level of the search tree
and the inner loop works on boxes belonging to the same level of the search tree.
The inner loop runs while the work list is not empty and the number of processed
boxes at the current level of the search tree is less thanNm. All the boxes not
selected at this level of the search tree are moved to the secondary list. Boxes
obtained from the subdivision of theNm selected boxes are stored in the temporary
list L1. At the next level of the search tree the work list is initiated with the set
of boxes saved at the temporary list. Whenever the value off ∗ is improved, the
CutOffTest is applied not only to the work and final lists but also to the temporary
and secondary lists. The FIO algorithm returns the final list with boxesX (w(X) 6
ε) which most probably contain the global solution, and the secondary list with the
set of non selected boxes.

The selection criterion used in the FIO algorithm tries to make global decisions
about the next box to be processed because all the candidates belong to the same
level of the search tree. This also ensures a better comparison between them be-
cause all the candidates have the same width and shape. This scheme follows a
Breadth-First selection strategy which usually needs high memory requirements,
but in the FIO algorithm the memory requirements are fixed byNm. This threshold,
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Figure 6. Values ofpf ∗(X) for boxes selected during the execution of Algorithm 1 withNm
= 20.

must depend on the available memory and computational resources. It is evident
that the greater the value ofNm, the wider the search region where the algorithm
works and the greater the probability of convergence to the global solution. A
graphical example of the search tree forNm = 3 and a bisection subdivision
strategy (d = 1) is shown in Figure 5.

As an example, using the Goldstein-Price function, Figure 6 graphically shows
the values ofpf ∗(X) for those boxesX which were selected during the execution
of the FIO algorithm. In this example, the termination criterion wasw(X) 6 ε =
10−15, which is near to the minimum value that can be achieved with a Pentium-II
processor due to the applied rounding. In this example, for which heavy restrictions
for memory requirements were established (Nm = 20), the problem was solved
([f ∗, f ∗] = [2.999999999999257,3.000000000000050]) with less than 5,000 in-
terval function evaluations and 0.15 seconds of CPU time. The number of boxes in
the final list was 80= Nm × 2d and one of them contained the global solution.

5. Numerical Results

This section intends to show experimental results attempting to determine under
which conditions the FIO algorithm is able to obtain the global solution for a
GO problem. These numerical results can also be seen as a measurement of the
capability of the algorithm for being used as a good local search procedure.

The experiments were carried out with a Pentium-II PC (233 Mhz., 256 Mbyte
RAM) running the Linux operating system. Programs were coded in C and C++.
The inclusion functions were implemented via the PROFIL/BIAS routines [13, 14,
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15]. All derivatives are computed with automatic differentiation (see C++ Toolbox
[6]), where the usual techniques of the forward mode of automatic differentiation
have been applied. The standard time unit (the CPU time required to evaluate the
Shekel 5 test function 1000 times at(4.0,4.0,4.0,4.0)T ) was 0.0215 seconds.

In order to evaluate the capability of our algorithmic proposal for finding global
minima, our computational experiments have been carried out using a wide set of
test functions. This set of thirty four test problems, which includes several hard
problems, is described in Table 1 where also numerical results for the Moore-
Skelboe algorithm with the standard Best-FirstF selection criterion, midpoint,
cut-off and monotonicity tests as the only accelerating devices are shown. The
division rule used to obtain the results in Tables 1 to 3, consisted in bisecting the
two widest dimensions of a box in one step and the stopping criterion was always
w(X) 6 ε = 10−6.

In the next tables the following notation has been used for column headers:

Prob.: The name of the test function.
Ref.: Reference where the problem is described.
n: Dimension of the problem.
Nm: Maximum Number of boxes to be processed at each level of

the search tree.
CPU: Execution time in seconds.
FX: Number ofF(X) evaluations.
GX: Number of∇F(X) evaluations.
Fx: Number ofF(m(X)) evaluations. It is equal to the number

of boxes extracted from the work list.

Results in Table 1 show that for most of the functions the Moore-Skelboe al-
gorithm is able to find the global solution very fast, however for a set of six test
functions (EX2, KW, N2, N3-10, R8 and RT20) the program was stopped after two
hours.

Table 2 shows the computational cost of the FIO algorithm evaluated withpf ∗
andF as the parameter used by the selection criterion (line 10 of Algorithm 1).
Notice that the only difference between both alternatives is the criterion applied to
sorting the listL0; a non-increasing order of the value ofpf ∗ and a non-decreasing
order of the value ofF . Results in Table 3 were obtained by adding the monoton-
icity test to the FIO algorithm. In Tables 2 and 3, the values of the CPU time and
the number of interval evaluations (FX, GX and Fx) from executions of the FIO
algorithm were computed using a specific value ofNm. For each function the value
of Nm was chosen in such a way that at least one of the global minima of the
function was contained in the set of boxes of the final listQ; i.e. the minimum
value ofNm for which the global solution was found. That is whyNm differs from
problem to problem.

From a computational perspective, in Table 2 it can be seen that the FIO al-
gorithm with a selection criterion based onF is more expensive than that based on
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Table 1. Data on the set of thirty four test functions and numerical results for the Moore-Skelboe
algorithm with the standard Best-FirstF selection criterion, midpoint, cut-off and monotonicity tests,
ε = 10−6 and using bisection of the two widest dimensions of a box in one step as division rule

Prob. Ref. n CPU FX GX Fx

GP Goldstein-Price [22] 2 12.62 59,445 33,098 14,861

S10 Shekel 10 [22] 4 0.37 209 199 52

S7 Shekel 7 [22] 4 0.25 197 190 49

S5 Shekel 5 [22] 4 0.18 193 183 48

H6 Hartman 6 [22] 6 2.48 2,125 1,626 531

H3 Hartman 3 [22] 3 0.52 709 646 177

L3 Levy No. 3 [23] 2 5.47 2,401 1,908 600

L5 Levy No. 5 [23] 2 1.07 665 320 166

L8 Levy No. 8 [23] 3 0.09 153 130 38

C Six Hump Camel Back [22] 2 0.42 1,469 975 367

C3 Three Hump Camel Back [4] 2 0.28 1,133 753 283

G2 Griewank 2 [22] 2 0.05 437 113 10

G10 Griewank 10 [22] 10 380.73 615,765 154,965 153,941

BR2 Branin 2 [4] 2 0.14 965 313 241

SRB2 Simplified Rosenbrock [4] 2 0.03 409 119 102

RB2 Rosenbrock [4] 2 0.03 409 116 102

RB10 Rosenbrock [17] 10 47.27 118,897 30,537 29,724

P Price [5] 2 0.11 1,157 302 289

TR Treccani [4] 2 0.03 541 141 135

S3.1 Schwefel No. 3.1 [23] 3 0.05 197 165 49

MT Matyas [23] 2 0.05 757 197 189

EX1 EX1 [3] 2 0.03 109 89 27

EX2 EX2 [3] 5 >2h — — —

BR Branin [22] 2 0.12 1,033 366 258

KW Kowalik [23] 4 >2h — — —

N2 Neumaier 2 [17] 4 >2h — — —

N3-10 Neumaier 3 [17] 10 >2h — — —

R4 Ratz No. 4 [20] 2 0.39 1,525 1,293 381

R8 Ratz No. 8 [20] 9 >2h — — —

HM3 Henriksen-Madsen No. 3 [8] 2 2.04 3,445 1,897 861

HM4 Henriksen-Madsen No. 4 [8] 3 8.89 12,965 4,655 3,241

BL Beale [23] 2 0.11 745 310 186

CHI Chichinadze [5] 2 0.05 153 127 38

RT20 Rastringin [17] 20 >2h — — —
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pf ∗ for a wide set of functions (the following sixteen functions: GP, S10, S7, S5,
H6, H3, L3, L5, C, C3, EX1, EX2, KW, N3-10, R4, and CHI). Only for functions
S3.1, HM3, HM4 and BL the FIO algorithm based onF behaves better than that
based onpf ∗. For the remaining fourteen functions, similar numerical results were
obtained for both parameters (F , pf ∗). However, using the monotonicity test (see
Table 3), the results obtained withpf ∗ are actually better than those ofF only for
functions GP, H3, L3, L5, C, C3, EX2, KW, N3-10 and R4, while for functions
S3.1, HM3, HM4 and BL the use ofF is less expensive thanpf ∗. For the remain-
ing twenty test functions both parameters produce similar numerical results. From
these results it can be said that for deciding which box contains a global minimizer
point the parameterpf ∗ is a better estimator than the parameterF . Notice also that
for function N3-10 the FIO algorithm withF did not find the global solution after
six hours even using the monotonicity test.

The numerical results in Tables 2 and 3 show that for a wide set of test functions
it is possible to select a small value ofNm for which at least one global minimizer
point is found and also that for extremely hard functions the FIO algorithm using
pf ∗ was able to find a global minimizer point very fast, even without applying
the monotonicity test. For all the functions, the value ofNm is less or equal when
monotonicity test is used. However, the CPU time for the FIO algorithm is greater
with than without using the monotonicity test because the algorithm has to evaluate
the derivative of the inclusion function for most of the processed boxes.

In general, the fastest solutions for the FIO algorithm were obtained with a
selection criterion based onpf ∗ and without monotonicity test. Thus, the FIO
algorithm is also suitable for non-differentiable problems where advanced acceler-
ating devices cannot be applied.

It is worth mentioning that for many functions the minimum value ofNm (Nm =
1) was sufficient to find a global minimizer point. One of the functions included in
this set is RT20 which was not solved by the Moore-Skelboe algorithm.

Due to the heuristic characteristic of the parameters used in the selection rule
(pf ∗, F ) the minimum value ofNm, with which a global minimizer point can be
found, is not known in advance. One of the reasons whyNm should be greater than
one is that two or more boxes at the same level of the search tree have the same
value of the parameter (pf ∗ or F ).

Although numerical results in the Tables have shown that the FIO algorithm has
found a global minimizer point for the set of tested functions, there are problems
where this local search algorithm does not converge to a global minimizer point
with the available computational resources. An example of these problems is the
fifteen dimensional case of the N3 problem (N3-15) [17].

6. Concluding Remarks

In this work an interval B&B algorithm which incorporates a new selection cri-
terion has been analyzed. Its ability to obtain very fast improvements off ∗ has
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Table 2. Numerical results of the FIO algorithm withε = 10−6 and using bisection of the
two widest dimensions of a box in one step as division rule

Selection Criterion based onpf ∗ Selection Criterion based onF

Prob. CPU Nm FX Fx CPU Nm FX Fx

GP 0.01 2 173 43 17.15 11,140 518,317 129,579

S10 0.04 2 369 92 0.54 43 5,785 1,446

S7 0.07 5 881 220 0.31 29 4,189 1,047

S5 0.11 11 1,725 431 0.19 24 3,273 818

H6 0.70 31 7,153 1,788 46.83 2,315 452,693 113,173

H3 0.08 10 1,125 281 2.50 375 35,293 8,823

L3 0.02 1 101 25 0.04 2 197 49

L5 0.02 1 101 25 0.08 4 377 94

L8 0.02 1 153 38 0.02 1 153 38

C 0.01 3 281 70 0.80 409 27,253 6,813

C3 0.20 341 7,689 1,922 0.38 1,387 17,637 4,409

G2 0.01 1 113 28 0.01 1 113 28

G10 0.14 1 621 155 0.15 1 621 155

BR2 0.02 4 373 93 0.02 4 385 96

SRB2 0.01 1 89 22 0.01 1 89 22

RB2 0.01 1 89 22 0.01 1 89 22

RB10 0.03 1 441 110 0.03 1 441 110

P 0.01 1 101 25 0.01 1 101 25

TR 0.01 1 97 24 0.01 1 97 24

S3.1 0.02 5 629 157 0.01 1 153 38

MT 0.01 1 101 25 0.01 1 101 25

EX1 0.01 4 317 79 0.03 8 581 145

EX2 11.71 529 91,873 22,968 370.13 17,973 2,764,613 691,153

BR 0.01 2 189 47 0.01 2 189 47

KW 1.94 155 21,069 5,267 72.35 6,708 783,293 195,823

N2 5.51 740 53,821 13,455 5.70 740 53,821 13,455

N3-10 31.94 965 522,465 130,616 — >105 — —

R4 0.05 10 861 215 0.13 29 2,401 600

R8 0.63 5 2,233 558 0.62 5 2,241 560

HM3 1.21 109 7,461 1,865 0.02 1 101 25

HM4 2.41 96 12,001 3,000 1.64 64 8,509 2,127

BL 0.02 9 781 195 0.01 6 549 137

CHI 0.01 1 105 26 0.63 119 10,213 2,553

RT20 0.44 1 1,241 310 0.44 1 1,241 310

been experimentally demonstrated. The algorithm can be seen from two perspect-
ives: (a) As a local optimizer based on interval evaluations which can be useful as
a first stage of any interval global optimization algorithm; (b) As an interval global
optimization algorithm which consists in repeatedly executing the FIO algorithm.
At every repetition the algorithm works on the set of boxes saved in the secondary
list during the previous execution.
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Table 3. Numerical results of the FIO algorithm with monotonicity test,ε = 10−6 and using
bisection of the two widest dimensions of a box in one step as division rule

Selection Criterion based onpf ∗ Selection Criterion based onF

Prob. CPU Nm FX GX Fx CPU Nm FX GX Fx

GP 0.07 2 173 173 43 11.75 5,867 57,185 30,554 14,296

S10 0.35 1 193 189 48 0.35 1 193 189 48

S7 0.25 1 193 188 48 0.25 1 193 188 48

S5 0.18 1 193 183 48 0.17 1 193 183 48

H6 2.59 31 1,965 1,715 491 2.34 20 1,677 1,558 419

H3 0.39 5 497 482 124 0.53 8 681 638 170

L3 0.27 1 101 101 25 0.33 2 129 125 32

L5 0.29 1 101 101 25 0.35 2 125 121 31

L8 0.09 1 153 130 38 0.09 1 153 130 38

C 0.08 3 193 190 48 0.35 63 1,245 815 311

C3 0.23 29 817 647 204 0.24 39 929 651 232

G2 0.02 1 113 32 28 0.01 1 113 32 28

G10 0.37 1 621 171 155 0.38 1 621 171 155

BR2 0.07 4 349 188 87 0.07 4 361 196 90

SRB2 0.01 1 89 54 22 0.01 1 89 54 22

RB2 0.01 1 89 57 22 0.01 1 89 57 22

RB10 0.33 1 441 244 110 0.33 1 441 244 110

P 0.01 1 101 33 25 0.01 1 101 33 25

TR 0.01 1 97 29 24 0.01 1 97 29 24

S3.1 0.10 3 413 294 103 0.05 1 153 143 38

MT 0.01 1 101 29 25 0.01 1 101 29 25

EX1 0.03 4 113 97 28 0.03 4 113 97 28

EX2 125.02 426 72,789 71,677 18,197 868.50 3,531 507,989 498,597 126,997

BR 0.05 2 189 161 47 0.05 2 189 161 47

KW 38.27 155 21,033 20,399 5,258 711.30 3,254 390,205 378,195 97,551

N2 31.41 740 53,821 28,123 13,455 31.33 740 53,821 28,123 13,455

N3-10 538.98 965 514,617 514,617 128,654 > 6h> 5 · 104 > 2 · 107 > 2 · 107 > 6 · 106

R4 0.19 10 677 657 169 0.22 29 921 739 230

R8 4.52 5 2,237 2,127 559 4.52 5 2,241 2,131 560

HM3 0.90 109 1,333 876 333 0.09 1 101 100 25

HM4 2.61 96 2,113 1,712 528 2.12 64 1,657 1,447 414

BL 0.11 7 629 320 157 0.11 6 549 311 137

CHI 0.04 1 105 101 26 0.03 1 105 101 26

RT20 1.38 1 1,241 341 310 1.37 1 1,241 341 310
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Algorithm 1 has been tested using two different selection criteria: based onpf ∗
andF parameters. The FIO algorithm with the parameterpf ∗ is more efficient
because the value ofNm, which indicates the necessary number of boxes selected
on each level of the search tree to reach the global solution, is smaller. TheNm para-
meter also determines the maximum width of the search tree. Therefore, using the
pf ∗ parameter the memory complexity and the execution time is reduced, which
helps to find a global solution quickly, even without using derivative information.
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